Statistical Lorentzian geometry and the closeness of Lorentzian manifolds
نویسنده
چکیده
I introduce a closeness function between causal Lorentzian geometries of finite volume and arbitrary underlying topology. The construction uses the fact that some information on the manifolds and metrics is encoded in the partial order that the causal structure of each metric induces among points randomly scattered in the corresponding manifold with uniform, finite density according to the volume element. When the density is finite, the closeness function is a pseudodistance, which only compares the manifolds down to the a finite volume scale; this is illustrated by a fully worked out example of two 2-dimensional manifolds of different topology. The introductory and concluding sections include some remarks on the motivation for this definition and its application to quantum geometry, and on the possibility of using it to obtain a distance function which distinguishes all pairs of Lorentzian manifolds. PACS numbers 04.20.Gz, 02.40.-k
منابع مشابه
On $(epsilon)$ - Lorentzian para-Sasakian Manifolds
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کاملContributions to differential geometry of spacelike curves in Lorentzian plane L2
In this work, first the differential equation characterizing position vector of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the special curves mentioned above are studied in Lorentzian plane $mathbb{L}%^{2}.$ Finally some characterizations of these special curves are given in $mathbb{L}^{2}.$
متن کاملOn the Isometry Group and the Geometric Structure of Compact Stationary Lorentzian Manifolds
We study the geometry of compact Lorentzian manifolds that admit a somewhere timelike Killing vector field, and whose isometry group has infinitely many connected components. Up to a finite cover, such manifolds are products (or amalgamated products) of a flat Lorentzian torus and a compact Riemannian (resp., lightlike) manifold.
متن کاملPeriodic Geodesics and Geometry of Compact Stationary Lorentzian Manifolds
We prove the existence of at least two timelike non self-intersecting periodic geodesics in compact stationary Lorentzian manifolds and we discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a stationary Lorentzian metric if and only if M admits a smooth circle action without fixed points.
متن کامل